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Structure of nonuniform polymer melts: Density functional perturbation approach
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A density functional perturbation approximation for polyatomic molecules, which is based on the
fundamental-measure theory for hard-core repulsion and the hybrid weighted-density approximation for chain
connectivity, was proposed to clarify the structure of polymer melts at interfaces. It was applied to predict the
local density distributions, adsorption isotherms, and surface excess of a freely jointed tangent hard-sphere
chain in hard slit pores. Wertheim’s first-order perturbation theory extended by Yu and.V@hem. Phys.

112 2368(2002] was used to calculate the weight function and second-order direct correlation function due
to the chain connectivity. The theoretical results are in excellent agreement with the computer simulations.
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The structural behaviors of polymer melts at interfaces ardreely jointed tangent hard sphere chain at solid-liquid inter-
of considerable practical application such as lubrication, surfaces. We finally discuss the strengths and weaknesses of the
face finishing, and liquid polymer alloyid,2]. Many theo-  proposed DFPT in the actual applications.
retical approaches like integral equation thegiyT) and We consider a one-component fluid of chain molecules
density functional theoryDFT) have been developed to un- composed ofN identical monomeric units. The molecular
derstan_d the effect of polymer structure on thelr surfac%ensity pp(li) is a function of the positionsli
propertieq1]. Each theory has advantages and d|sa_dvantag&=s{r»l’r»2' .-+, F\J, which is the set of positions of the mono-
for the analysis of polymer fluids and solutions. It is gener- >
ally known that the DFT yields better results than the IET inMers on a polymer molecule. The grand poterlgp,(R)],
many applications. Although the DFT is less accurate thamvhich is a functional of the molecular densipy(R), is de-
computer simulations, it provides a powerful theoretical toolfined as the Legendre transform of the intrinsic Helmholtz
to analyze the polyatomic molecular liquids. Indeed, theyfree energy functionaF[pp(Ii)],
can offer a compromise between accuracy and computational
expense.

Yu and Wu[3] have recently proposed a density func- 21 >3 =
tional perturbation theorgDFPT) analysis of a freely jointed Olpp(R]=Flpp(0)] +JdRpp(R)[uex(R) #lo @
tangent hard-sphere chain in hard slit pores. Here, the con-
tribution due to the chain connectivity is evaluated by using i ) _ -
Wertheim’s first-order perturbation theof] which was ex-  Whereu is the molecular chemical potential ang{(R) the
tended to inhomogeneous systems in the form ofXternal potential responsible for the density inhomogene-
fundamental-measure theoflfMT) weight densitieg5]. In ity [1]. Following the DFPT, we can divide the intrinsic
particular, Wertheim's first-order perturbation theory ex-Helmholtz free energy into three parts; the ideal gas con-
tended by Yu and Wu is very accurate for a wide range otribution Fig[p,(R)], the excess free enerdy,d p,(R)] due
density distributions and provides self-consistent solutionso the hard-sphere repulsion, and the excess free
for the structural properties of polymer fluids such as theanergy F.{p,(R)] due to the chain connectivity.
second-order direct correlation functiodBRCF) c?(r,p). On he ideal e S h
the other hand, the success of the DFT’'s based on thg © |de§1 gas ConthUt'OE‘d[pp(B)] 'S given by t e exact
weighted-density approximation@VDAs) [6-9] suggests expressionFig[ py(R)]=4"*/dRop(R) [In{A%pp(R)}-1]
the application of the DFPT, which is based on the WDA for+ [dRV(R)p,(R), where B=1/kgT, kg is the Boltzmann
the chain connectivity, to the case of polymer melts at solidconstant, A is the thermal de Broglie wavelength, and

liquid interfaces. , V(R) describes the internal potential corresponding to an
In this brief report, we will propose a DFPT based both Onarbitrary configuration of a polymer chain

the Fed”"ed excess free energy density fqr the hard.-corc_—:‘ ' The equilibrium molecular density satisfies the stationary
pulsion and on the hybrid weighted-density approximation . - - )
(HWDA) for the chain connectivity to analyze polyatomic cONdition 98Q[p,(R)1/9py(R)=0, which leads to the Euler-
fluids. We apply it to study the structural properties of alLagrange relationu—ue,(R)=8BF[py(R)]/ dpp(R). For the
polymer system whose segments are identical, the local den-
sity distribution(or the single particle average site dengity

*Electronic address: sckim@andong.ac.kr p(F) is related to the polymer molecular densﬁi,;(li) via
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Then, the density profile equation becomes 15
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p() = ¢ f AR o7 - Fexp) ~ VR - Bued R + 2 () 5 1)
i=1 i=1
0.5 -
X(7:[p]) + Clhai ;[pm} , (3) 00
where¢ is the fugacity ¢ (f1;[p]) andc\y. (F1;[p]) are the 05 ' : : : '
first-order direct correlastion functior(ég?i’s) and are de- 0.0 02 0.4 06 08 1.0 12
fined as the density functional derivative of the excess r'c

free energy with respect to the local density distribution.

It is well known that for hard spheres, the fundamental- FIG. 1. Weight functionss(r,p) as a function of the bulk den-
measure theoryFMT) [5] proposed by Rosenfeld and co- sity p.

workers is numerically simple and very accurate for a

wide range of density distributions. As an application, we consider freely jointed tangent
To approximate the first-order DCécﬁam(F; [p]) due to  hard-sphere chains at polymer-solid interfaces. In a tangen-
the chain connectivity, we introduce the HWDA which was tially connected chain, the bond length is equal to the hard-
proposed by Leidl and Wagngt0] and applied for studying sphere segment diameterand there is no angle constraint
the structural properties of a confined hard-sphere fluid. Acbetween neighboring bonds. The chain connectivity is repre-
tually, for the hard-sphere fluids within slit pores the HWDA sented by the bonding potential. Two types of wall-polymer
yields good agreement with the computer simulations eveinteractions have been considered. One is a structureless hard

for the high densities. Following the HWDA, the excess freewall. The other is the hard walls with a slit pore width In

energyF il p] can be written by this case, the external potential is given by{z) =0 for
0<z<H. For the polymer systems within slit pores, the lo-
Tol= > _ cal density distribution varies only along tzedirection by
Fenairl ] fdfp(ﬂfcha.r[ﬂf)], @ the symmetryp(f)=p(2). The local density distribution, Eq.

) i (3), simply becomes, after some manipulations,
where f.ii(p) is the excess free energy per particle and

the weighted density(r) is assumed as N
’ 70 o(2) = £3 explel(z[p) + iz )G AN (2,
i=1
0 = [ of, p00i - i) © o
with pp]=1/N[diyp(fy) [dF, p(Fy)w(fi=Fy:p). The weight Where Gi(zy)=[dz expiCio(za:[p]) +Cipi(z2: [PD} (o =2,
function w(p) due to the chain connectivity was specified by ~2/)/20G"™(z,) with G'(z)=1.
the definition of the second-order DCEY) (F1—F,,p) The FMT proposed by Rosenfeld and c)()lworkEEr]swas
=~ PBF il P/ 5p(F1) Spa(F)| )=, In Fourier space, the employed to calculate the first-order De(F;[p]) due to
weight function satisfies the simple algebraic form the hard-sphere repulsion. The excess free enéjgy(p)
and second-order DCngam(r,p) due to the chain connec-
pf fpair(p) (K, p) (K, p) + 2f i p) (K, p) + BcE (K, p) tivity were evaluated by using the Wertheim’s first-order per-
“0 ©) turk_)ation the_o_ry[4] which was extende(du_sing FMT-style
: weight densities by Yu and Wu([3,11] to inhomogeneous

The normalizationw(k=0,p)=1 ensures the compressibility SYSt€MS,
rule [10]. Then, the first-order DCEélh)am(F; [p]) becomes, 1-N R
from Eqs(4) and (5), Fenairlp] v f drng(NEMIN[yha,{n, (NP1,  (9)

@ (7 fo - " L . 0p(r2) where n,(f) are the weighted densities,&()=1
Cchain(rlu[P]) = fenail ()] +J dr, P(rz)fchai p(r)] 5p(F1) ) —~Fya(F) 'ﬁvz(l?)/ng('?): while Yhs(o'?{na(':)}) is connected with
7) the Carnahan-Starling expression for the contact value of the
radial distribution function of a hard sphemg;{(o,{n,("})
where the prime denotes the derivative with respect to the1/[1 —ng(F)]+n,(F) o&(X)/{4[1—-ng(N) ]2} +na(1) o2&()/
density. In the uniform limit, it becomes(cﬁ)ain(p):fcham(p) {7201-ny(N]3}. It is noted that the second-order DCF
+pflainp) sinceplp]l=p and fdrw(r,p)=1. c(ci)am(r,p) depends only on the the scalar weighted den-
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FIG. 2. Local density distributions of tri-mers in a slit pore S )
width H=100. The solid circles are from the simulation results ~ F!G. 4. Local density distributions of the end and middle seg-

(Ref. [12)). ment of hard-sphere-mers withn=20 (H=16c¢). The solid and
open circles represent the end and middle segment, respectively
(Ref. [13)).

sity. Through the numerical calculations, the diameter of a
hard spheres was taken as the unit length. A standard

Picard iteration technique was used to calculate the IocaRaCk(')g? de?]sny of chain i_egmsnta IS c!eﬁ(rjne;_j a;’”
density distributionp(2). =mpo°l6. The average packing density, is defined as

In Fig. 1, we present the weight functioa(r,p) as a na”:(W/GH)fg p(z)dz As shown in Figs. 2 and 3, at low

function the bulk density. The weight function shows the bulk density, the theoretical results are in excellent agree-
strong density behaviors. Notice here that the weight func-

. . 05
tion w(r,p) depends only on the bulk density but noton "~~~ ____
the monomeric unith composed of a polymer fluid. 04t @ L em=sET
The calculated local density distributions fmers with 03l e
n=3 and 20 were presented in Figs. 2 and 3, where the & - P
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FIG. 5. () Adsorption isotherms afi-mers withn=4 and 8 in a
slit pore widthH=5¢. The solid and open circles are from the
computer simulations (Ref. [13]). (b) Surface excess of
FIG. 3. Local density distributions oh=20 n-mers. (a) H (n=20)-mers near a hard wall. The open and solid circles are from
=160 and (b) H=100. The solid circles are from the simulation the computer simulatiogRefs.[13,14) and the CMS-DF approxi-
results(Refs.[13,14). mation of Hooperet al. (Ref. [15]), respectively.
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ment with Monte Carlo simulation§l2-14 for the local =p(z=0), where p(z=0) is the contact density at the hard
density distributions. However, the accuracy slightly deterio+wall. Figure %b) shows the surface excess mimers with
rates with increasing the bulk density; near a hard wall, théy=20 near a hard wall, where the surface excess is defined as
present approximation shows the higher density distribution =[%[p(z)-p]dz Once again, our predictions are in good
compared with the computer simulation. Even though we di grement with the computer simulatipb4] and those from
not display any other resul{8,13) in figures, a comparison oo
shows that the present approximation compares with those 5?8 CMS-DF approximation of Hoopet al. [15]. .
Yu and Wu[3]. These results confirm that the DFPT based N Summary, we have developed the DFPT, which was
on the “coarse-grained” density yields better results than th€ased both on the FMT and on the HWDA, to study the
integral equation theory. Our results also suggest that thetructural properties of nonuniform polymer melts at inter-
present approximation describes the configurational entropitaces. The overall agreement with the computer simulation is
effects caused by the depletion of longer chains from thexcellent, even through the accuracy between the theoretical
surfaces as compared to shorter chains very well. prediction and the computer simulation slightly deteriorates
The density distributions of the end and middle segmentvith increasing density. As a comment, the disadvantage of
of hard-spheren-mers withn=20 in a slit pore widthH  the present approximation is that the second-order DCF
=160 were presented in Fig. 4 along with the computerc'® (v ) of the model polymers comes from other theories
simulations [13], where the segment d?lr;sny d'Str('B“t'on as well as the bridge density functional approximation pro-
piz) is defined as p(2)=¢explcs(Z[p)*Chan  posed by Zhoy16], while the DFPT proposed by Yu and Wu
x(z;[p])}G'(2)G""*"(2). The present approximation predicts [3] yields the self-consistent solutions. On the other hand, the
that the density of chain ends near a hard wall is greater thagy,ccess of the present approximation for a freely jointed tan-
the density of central beads. Once again, an excellent agregent hard-sphere chain suggests the application of the pro-

ment with the computer simulations is found at low density.nosed DFPT to the case of a chain-sphere mixi8y&4). We
However, the accuracy slightly deteriorates at high densitiegyi|| study this problem in the future.
expected from Figs. 2 and 3.
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