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A density functional perturbation approximation for polyatomic molecules, which is based on the
fundamental-measure theory for hard-core repulsion and the hybrid weighted-density approximation for chain
connectivity, was proposed to clarify the structure of polymer melts at interfaces. It was applied to predict the
local density distributions, adsorption isotherms, and surface excess of a freely jointed tangent hard-sphere
chain in hard slit pores. Wertheim’s first-order perturbation theory extended by Yu and Wu[J. Chem. Phys.
112, 2368(2002)] was used to calculate the weight function and second-order direct correlation function due
to the chain connectivity. The theoretical results are in excellent agreement with the computer simulations.
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The structural behaviors of polymer melts at interfaces are
of considerable practical application such as lubrication, sur-
face finishing, and liquid polymer alloys[1,2]. Many theo-
retical approaches like integral equation theory(IET) and
density functional theory(DFT) have been developed to un-
derstand the effect of polymer structure on their surface
properties[1]. Each theory has advantages and disadvantages
for the analysis of polymer fluids and solutions. It is gener-
ally known that the DFT yields better results than the IET in
many applications. Although the DFT is less accurate than
computer simulations, it provides a powerful theoretical tool
to analyze the polyatomic molecular liquids. Indeed, they
can offer a compromise between accuracy and computational
expense.

Yu and Wu [3] have recently proposed a density func-
tional perturbation theory(DFPT) analysis of a freely jointed
tangent hard-sphere chain in hard slit pores. Here, the con-
tribution due to the chain connectivity is evaluated by using
Wertheim’s first-order perturbation theory[4] which was ex-
tended to inhomogeneous systems in the form of
fundamental-measure theory(FMT) weight densities[5]. In
particular, Wertheim’s first-order perturbation theory ex-
tended by Yu and Wu is very accurate for a wide range of
density distributions and provides self-consistent solutions
for the structural properties of polymer fluids such as the
second-order direct correlation function(DCF) cs2dsr ,rd. On
the other hand, the success of the DFT’s based on the
weighted-density approximations(WDA’s) [6–9] suggests
the application of the DFPT, which is based on the WDA for
the chain connectivity, to the case of polymer melts at solid-
liquid interfaces.

In this brief report, we will propose a DFPT based both on
the reduced excess free energy density for the hard-core re-
pulsion and on the hybrid weighted-density approximation
(HWDA) for the chain connectivity to analyze polyatomic
fluids. We apply it to study the structural properties of a

freely jointed tangent hard sphere chain at solid-liquid inter-
faces. We finally discuss the strengths and weaknesses of the
proposed DFPT in the actual applications.

We consider a one-component fluid of chain molecules
composed ofN identical monomeric units. The molecular

density rpsRW d is a function of the positions RW

;hrW1,rW2,¯ ,rWNj, which is the set of positions of the mono-

mers on a polymer molecule. The grand potentialVfrpsRW dg,
which is a functional of the molecular densityrpsRW d, is de-
fined as the Legendre transform of the intrinsic Helmholtz

free energy functionalFfrpsRW dg,

VfrpsRW dg = FfrpsrWdg +E dRW rpsRW dfuextsRW d − mg, s1d

wherem is the molecular chemical potential anduextsRW d the
external potential responsible for the density inhomogene-
ity f1g. Following the DFPT, we can divide the intrinsic
Helmholtz free energy into three parts; the ideal gas con-

tribution FidfrpsRW dg, the excess free energyFhsfrpsRW dg due
to the hard-sphere repulsion, and the excess free

energy FchainfrpsRW dg due to the chain connectivity.

The ideal gas contributionFidfrpsRW dg is given by the exact

expressionFid f rp s RW d g =b − 1edRW rp s RW d f lnhL3rpsRW dj−1g
+edRWVsRW drpsRW d, where b=1/kBT, kB is the Boltzmann
constant,L is the thermal de Broglie wavelength, and

VsRW d describes the internal potential corresponding to an
arbitrary configuration of a polymer chain.

The equilibrium molecular density satisfies the stationary

condition dbVfrpsRW dg /drpsRW d=0, which leads to the Euler-

Lagrange relationm−uextsRW d=dbFfrpsRW dg /drpsRW d. For the
polymer system whose segments are identical, the local den-
sity distribution (or the single particle average site density)
rsrWd is related to the polymer molecular densityrpsRW d via*Electronic address: sckim@andong.ac.kr
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rsrWd =E dRWo
i=1

N

dsrW − rWidrpsRW d. s2d

Then, the density profile equation becomes

rsrWd = jE dRWo
i=1

N

dsrW − rWidexpF− bVsRW d − buextsRW d + o
i=1

N

hchs
s1d

3srWi ;frgd + cchain
s1d srWi ;frgdjG , s3d

wherej is the fugacity.chs
s1dsrW1; frgd andcchain

s1d srW1; frgd are the
first-order direct correlation functionssDCF’sd and are de-
fined as the density functional derivative of the excess
free energy with respect to the local density distribution.
It is well known that for hard spheres, the fundamental-
measure theorysFMTd f5g proposed by Rosenfeld and co-
workers is numerically simple and very accurate for a
wide range of density distributions.

To approximate the first-order DCFcchain
s1d srW ; frgd due to

the chain connectivity, we introduce the HWDA which was
proposed by Leidl and Wagner[10] and applied for studying
the structural properties of a confined hard-sphere fluid. Ac-
tually, for the hard-sphere fluids within slit pores the HWDA
yields good agreement with the computer simulations even
for the high densities. Following the HWDA, the excess free
energyFchainfrg can be written by

Fchainfrg =E drWrsrWdfchainfr̄srWdg, s4d

where fchainsrd is the excess free energy per particle and
the weighted densityr̄srWd is assumed as

r̄srW1d =E drW2 rsrWdvsrW1 − rW2; r̂d s5d

with r̂frg=1/NedrW1rsrW1dedrW2 rsrW2dvsrW1−rW2; r̂d. The weight
functionvsrd due to the chain connectivity was specified by
the definition of the second-order DCFcchain

s2d srW1−rW2,rd
;−d2bFchainfrg /drsrW1ddr2srW2dursrWd−.r. In Fourier space, the
weight function satisfies the simple algebraic form

rf chain9 srdvsk,rdvsk,rd + 2fchain8 srdvsk,rd + b−1cchain
s2d sk,rd

= 0. s6d

The normalizationvsk=0,rd=1 ensures the compressibility
rule f10g. Then, the first-order DCFcchain

s1d srW ; frgd becomes,
from Eqs.s4d and s5d,

cchain
s1d srW1;frgd = fchainfr̄srW1dg +E drW2 rsrW2dfchain8 fr̄srW2dg

dr̄srW2d
drsrW1d

,

s7d

where the prime denotes the derivative with respect to the
density. In the uniform limit, it becomescchain

s1d srd= fchainsrd
+rfchain8 srd since r̂frg=r and edrWwsr ,rd=1.

As an application, we consider freely jointed tangent
hard-sphere chains at polymer-solid interfaces. In a tangen-
tially connected chain, the bond length is equal to the hard-
sphere segment diameters and there is no angle constraint
between neighboring bonds. The chain connectivity is repre-
sented by the bonding potential. Two types of wall-polymer
interactions have been considered. One is a structureless hard
wall. The other is the hard walls with a slit pore widthH. In
this case, the external potential is given byuextszd=0 for
0,z,H. For the polymer systems within slit pores, the lo-
cal density distribution varies only along thez direction by
the symmetry;rsrWd=rszd. The local density distribution, Eq.
(3), simply becomes, after some manipulations,

rszd = jo
i=1

N

exphchs
s1dsz;frgd + cchain

s1d sz;frgdjGiszdGN+1−iszd,

s8d

where Gisz1d=edz2 exphchs
s1dsz2; frgd+cchain

s1d sz2; frgdjuss− uz1

−z2ud /2sGi−1sz2d with G1szd=1.
The FMT proposed by Rosenfeld and co-workers[5] was

employed to calculate the first-order DCFchs
s1dsrW ; frgd due to

the hard-sphere repulsion. The excess free energyfchainsrd
and second-order DCFcchain

s2d sr ,rd due to the chain connec-
tivity were evaluated by using the Wertheim’s first-order per-
turbation theory[4] which was extended(using FMT-style
weight densities) by Yu and Wu [3,11] to inhomogeneous
systems,

Fchainfrg =
1 − N

N
E drWn0srWdjsrWdlnfyhs„s,hnasrWdj…g, s9d

where nasrWd are the weighted densities,jsrWd=1
−nWV2srWd ·nWV2srWd /n2

2srWd, while yhsss ,hnasrWdjd is connected with
the Carnahan-Starling expression for the contact value of the
radial distribution function of a hard sphere;yhs(s ,hnasrWdj)
=1 / f 1 − n3 s rW d g +n2 s rW d sjsrWd / h4f1−n3srWdg2j+n2

2srWds2jsrWd /
h72f1−n3srWdg3j. It is noted that the second-order DCF
cchain

s2d sr ,rd depends only on the the scalar weighted den-

FIG. 1. Weight functionsvsr ,rd as a function of the bulk den-
sity r.
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sity. Through the numerical calculations, the diameter of a
hard spheres was taken as the unit length. A standard
Picard iteration technique was used to calculate the local
density distributionrszd.

In Fig. 1, we present the weight functionvsr ,rd as a
function the bulk densityr. The weight function shows the
strong density behaviors. Notice here that the weight func-
tion vsr ,rd depends only on the bulk densityr, but not on
the monomeric unitsN composed of a polymer fluid.

The calculated local density distributions ofn-mers with
n=3 and 20 were presented in Figs. 2 and 3, where the

packing density of chain segmentsh is defined ash
=prs3/6. The average packing densityhav is defined as
hav=sp /6Hde0

H rszddz. As shown in Figs. 2 and 3, at low
bulk density, the theoretical results are in excellent agree-

FIG. 2. Local density distributions of tri-mers in a slit pore
width H=10s. The solid circles are from the simulation results
(Ref. [12]).

FIG. 3. Local density distributions ofn=20 n-mers. (a) H
=16s and (b) H=10s. The solid circles are from the simulation
results(Refs.[13,14]).

FIG. 4. Local density distributions of the end and middle seg-
ment of hard-spheren-mers with n=20 sH=16sd. The solid and
open circles represent the end and middle segment, respectively
(Ref. [13]).

FIG. 5. (a) Adsorption isotherms ofn-mers withn=4 and 8 in a
slit pore width H=5s. The solid and open circles are from the
computer simulations (Ref. [13]). (b) Surface excess of
sn=20d-mers near a hard wall. The open and solid circles are from
the computer simulation(Refs.[13,14]) and the CMS-DF approxi-
mation of Hooperet al. (Ref. [15]), respectively.
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ment with Monte Carlo simulations[12–14] for the local
density distributions. However, the accuracy slightly deterio-
rates with increasing the bulk density; near a hard wall, the
present approximation shows the higher density distributions
compared with the computer simulation. Even though we did
not display any other results[3,13] in figures, a comparison
shows that the present approximation compares with those of
Yu and Wu[3]. These results confirm that the DFPT based
on the “coarse-grained” density yields better results than the
integral equation theory. Our results also suggest that the
present approximation describes the configurational entropic
effects caused by the depletion of longer chains from the
surfaces as compared to shorter chains very well.

The density distributions of the end and middle segment
of hard-spheren-mers with n=20 in a slit pore widthH
=16s were presented in Fig. 4 along with the computer
simulations [13], where the segment density distribution
riszd is defined as riszd=j exphchs

s1dsz; frgd+cchain
s1d

3sz; frgdjGiszdGN+1−iszd. The present approximation predicts
that the density of chain ends near a hard wall is greater than
the density of central beads. Once again, an excellent agree-
ment with the computer simulations is found at low density.
However, the accuracy slightly deteriorates at high densities
expected from Figs. 2 and 3.

Figure 5(a) shows the adsorption isotherms ofn-mers of
n=4 and 8 in a slit pore widthH=5s. The pressureP acting
on the inside faces of the two hard walls is given bybP

=rsz=0d, where rsz=0d is the contact density at the hard
wall. Figure 5(b) shows the surface excess ofn-mers with
n=20 near a hard wall, where the surface excess is defined as
G=e0

`frszd−rgdz. Once again, our predictions are in good
agrement with the computer simulation[14] and those from
the CMS-DF approximation of Hooperet al. [15].

In summary, we have developed the DFPT, which was
based both on the FMT and on the HWDA, to study the
structural properties of nonuniform polymer melts at inter-
faces. The overall agreement with the computer simulation is
excellent, even through the accuracy between the theoretical
prediction and the computer simulation slightly deteriorates
with increasing density. As a comment, the disadvantage of
the present approximation is that the second-order DCF
cchain

s2d sr ,rd of the model polymers comes from other theories
as well as the bridge density functional approximation pro-
posed by Zhou[16], while the DFPT proposed by Yu and Wu
[3] yields the self-consistent solutions. On the other hand, the
success of the present approximation for a freely jointed tan-
gent hard-sphere chain suggests the application of the pro-
posed DFPT to the case of a chain-sphere mixture[3,14]. We
will study this problem in the future.
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